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Abstract—Nonminimum-phase parts are better removed in the feedback loop like the time delay term. For this,
Wright and Kravaris [1992] proposed the concept of optimal minimum-phase output to control nonlinear nonminimurm-
phase processes. However, their optimal minimum-phase output has no analytic solutions for processes with more
than three state variables. Here, methods for analytic minimum-phase outputs approximating the optimal ones are
proposed, having no limitations in the number of state variables. The proposed methods provide analytic solutions for
processes with three state variables and simple numerical solutions for those with more state variables.
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INTRODUCTION

For nonlinear nonminimum-phase processes, controller design
methods such as the input/output linearization method [Kravaris
and Chung, 1987], which are based on the inversion of process dy-
namics, canmot be applied directly due to their unstable mverse.
The nonminimum-phase parts which yield unstable inverse should
be removed in the inversion mechanism. For linear processes, the
nonminimum-phase parts can be easily isolated by decomposing
the process transfer functions. The internal model control of Garcia
and Morar [1982] and the generalized Smuth predictor of Raman-
athan et al. [1989] incorporate decomposition of transfer functions
in their controller design frameworks. For nonlinear nonminimum-
phase processes, such decomposition 1s not apparent except for the
second order processes [Kravaris and Daoutidis, 1990]. Instead,
Wright and Kravaris [1992] have proposed a method using auxil-
iary outputs which are statically equivalent to the real outputs and
minimum-phase. With the auxiliary outputs, minimum-phase pre-
dictors and consequent nonlnear control systems for the nonhnear
nonminimum-phase processes can be designed. One of key steps
in the method is how to obtain appropriate statically equivalent
mummum-phase outputs. For this, Wnght and Kravaris [1992] also
have proposed statically equivalent outputs which are optimal with
respect to a certain mtegral of square error (ISE) criterion. Their
control systems provide excellent control performances. However,
obtaining the ISE optimal minimum-phase output is somewhat re-
strictive because it 18 based on the nonlmear processes mn natural
coordinates [Hunt et al., 1983]. Furthermore, because it requires
solving high-order Euler-Lagrange equations for nonlinear dynam-
ical optimization, it is very hard to compute except for the pro-
cesses with zero dynamics of order 2 for which analytic solutions
exist.

Here we propose a statically equivalent minimum-phase out-
put which approximates the ISE optimal minimum-phase one of
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Wright and Kravaris [1992] end can be used mn the framework of
their control system for nonlinear nonminimum-phase processes.
The extended linearization method [Baumarm and Rugh, 1986;
Lin, 1994] is utilized. As shown later, it is the first order Taylor
series expansion of the global ISE optimal minimum-phase one
which 15 valid for neighborhoods along equilibrivm pomts. If set
point changes are not very fast and control actions are mild, states
of the process will not excurse far from their equilibrium values
and the proposed minimum -phase output approximating the global
ISE optimal one will be effective. Tt has the following properties:

- Analytic solutions are available for processes with zero dy-
namics of orders up to 3.

- For processes with higher order zero dynamics, solutions can
be easily calculated numerically and interpolated to analytic forms.

- When linearized at equlibrium pots, both the proposed out-
put and the TSE optimal minimum-phase output are the same.
Minimum-phase predictor with the proposed output can be inter-
preted as a gain-scheduled linear ISE optimal predictor compensat-
ing variation of the equilibrium point because it is the linear ap-
proximation of the global ISE optimal output of Wright and
Kravaris [1992].
1. Nonlinear Nonminimum-phase Processes

Consider a nonlinear process

X(O=Ex(O)+gx()ut)
y(O=h(x(t)) (0

where x, u and y are the n state variable vector, the scalar mput
variable and the scalar cutput variable, respectively. Tt is assumed
that the process (1) has an isolated equilibrium point (u, x,). The
process (1) 1s locally mimmum-phase m a neighborhood of the
equilibrium point (u,, x,), if all roots of the following polynomial
in Laplace variable s are in the open left half plane:

ni{s)=¢ adj(sI-A) b 2

where
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Fig. 1. Linearizing control system for nonlinear nonminimum-
phase processes.

Processes for which some roots of (2) are in the open right half
plane over desired equilibrium peints are considered. The mput/
output linearization method cannot be applied directly to such pro-
cesses. Wright and Kravans [1992] proposed a nonlmear control
system as in Fig. 1 which is an extension of the linear generalized
Smith predictor. In Fig. 1, the auxiliary output

yr=h*(x) 3

is such that it is statically equivalent to the output ¥ and mimi-
mum-phase. The choice of the awxiliary output y* is rather arbi-
trary but very much affects control performance. With transform-
mg the process i natural coordinates, Wright and Kravaris [1992]
proposed the awxiliary output which is optimal with respect to the
integral of square error (ISE) between y and y* when controlled
perfectly. The ISE optimal minmmum-phase output provides excel-
lent control performance. However, because it requires solving the
Buler-Lagrange equation, it 18 very hard to obtain except for the
second order case. Tts approximation is investigated here.
2. Approximation of the ISE Optimal Mimimum-phase Out-
put

The ISE optimal minimum-phase output of Wright and Kra-
varis [1992] can be obtained for a nonlinear process in natural co-
ordmates [Huntt et al., 1983]. Consider a nonlinear system of re-
lative order r in natural coordinates:

&=G
&=G

& =G,
C=ol, L O, . G
y:h(t.u: e t_mfrﬂ) (4)

The local zero pelynomial around an equilibrium point £.=(£,,
0,..,0 s

dh(C) onC) - IhCE) .
ag an aCn —r+1

If some roots of the zero polynomaial (5) are n the open night half
plane, control systems like in Fig. 1 which does not inverse the
zero dynamics should be used. For the control system 1n Fig. 1,
the TSE optimal minimum-phase output v* is proposed by Wright

nis)= (5)
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and Kravaris [1992]. Tt is stated as an (n—r+1)-th dimensional non-
lmear dynamical optimization problem and it results m solving an
(n—r+1)-th order Euler-Lagrange equation which is usually very
hard to solve except for the second order case. Minimum-phase
output which approximates the ISE optimal one 1s mnvestigated.
Since the steady-state values of states, {, i=2, 3, ..., n—r+1, are ze-
1o, the first approximation wiich 1s vahd along equilibrium pomts
is

y*=h} (GGG ++h) (GG, (6)

Tt is just the first order Taylor series expansion about for £, i=2,
3, .., n—r+] around their steady-state values of zero. From Eq. (4),
we can see that the state variables £, 1=2, 3, ..., n—r+1 will not be
far from their steady-state values of zero if the control input is
mild. Hence effects of higher order terms ignored in Eq. (6) will
not be much.

The zero polynomial for the auiliary output (6) around an equi-
librium point £=(£,., 0, ..., 0¥ is

n*(s) ﬂl%?“) L H(REUED W (R i Q)

For the auxiliary output (6) to be approximation of the TSE optimal
mimmum-phase output, the zero polynomial (7) should be ISE op-
timal locally arcund the equilibrium point £=(C,,, 0, ..., O)" and
statically equivalent. That is, it should satisfy [Wright and Kra-
varis, 1992]

n*(s) I*(~s) =n(s) n(~s) ®)
and

h(G)=h(g)
From Egs. (5), (7) and (8), we have [Riddle and Anderson. 1966]

[ dhi(g) J {ah(@

dg, ag,

N WA TN (4 3 S (AL, (S
s T (O [ag] e
(7= ST ©

Argument & in both sides of Eq. (9) is a dummy and can take
any value m the desired whole reange. Hence we can drop the sub-
seript s in §;,. Closed-form sohitions are available for orders up to
3. For example, in case of n—r+1=2, the solution of (9) is

Ih(C,.0)
ag, BETa

It can be easily checked that 1t 15 the first order Taylor series ex-
pansion about £,=0 of the ISE optimal minimum-phase cutput of
Wright and Kravaris [1992]

-n(t, &) 22l a1

y*=h(&,,0)— (10)

*
Ywr

Forn—r+1=3 and on( a‘éo’ 0) >0 (without loss of generality),

1
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y*:h(t.llwoao)
dh(£,,0,0) 8h(C1,0 0) dh(£,,0,0)
N e 9% g, - ah(g,o,O)‘gg
BQ | aﬁs
(12)

There 18 no such closed-form solution for the ISE optimal mini-
mum-phase output. When n—r+1 is greater than 3, solutions of (9)
can be found numerically for the whole range of the state &, and
can be interpolated to the analytical minimum-phase output.
3. Extension to General Nonlinear Nonminimum-phase Pro-
cesses

The auxiliary output of the form (6) can also be applied to gen-
eral nonlinear nonminimum-phase processes which cannot be
transformed to the natural coordinates whenever the equilibrium
point is of the form £=({,., 0, ..., 0)" Since a restrictive class of
nonlmear processes can be transformed to the process m natural
coardinates, it is important for wide applications. For a nonlinear
system (1), the equation f(x)+g(xu=0 usually has a solution about

fu, %, X5, ..., X,} @ a function of x,. Let the solution for x; as ¢{x;)
and define new state variables as

C=x,

C=x—¢x),1=2,3, .1 (13)
Then the state Eq. (1) becomes

= Qrwi(Qu

y=h(©) (14)

with an equilibrium point of the form £=(&,, 0, ..., OY.
The zero polynomial is

niz)=c adj(sI-A)b (15)

where

A-[5E 5 | bow.e [aq}

The zero polynomial for the process with output v* of the form (6)
is

n*(s)=c* adj(sI-A)b (16)

where

o = [dh(f“ ISINIRY

For the output y* to be ISE optimal along equilibrium points, the
above two zero polynomials should satisfy the Eq. (8). Tt is known
as a spectral factorization problem to find a stable polynomial
n*(s) from nfs) satisfying Eq. (8). There are closed-form solutions
for orders up to 3. Numerical iterative methods for higher order of
equations are given in Riddle and Anderson [1966]. From n(s) as
a function of £, we obtain *(s) by salving Eq. (8). Withn*(s), ¢*
and consequently hT(Cl) can be easily found from (16) since they
appear linearly.

EXAMPLES

1. Example 1
For illustration purposes, we consider a second order nonmini-
mum-phase process as [Wright and Kravaris, 1992];

X%
% =HX,, %)X, %)u
y=h(x)=x-3%—xx—x

The process 13 already m the form of natural coordmates. The equu-
librium point is x,=(x,,, 0). The zero polynomial is

nés) %, Ix,

=1-(3+x)s
Hence it is nonminimum-phase along the equilibrium points. From
Eq. (8), we have

n*(s)=1+(3+x)s
Therefore, h’:(xls)=xls and h’;(xls)=3+x2 5~ The minimum-phase out-
put which results i the above zero polynomial at each equilibrium
point is

YR A3NANE,

We can see that it is the first order Taylor series expansion about
x,0of the global ISE optimal one of Wright and Kravaris [1992];

NPT R A 0 AU o

2. Example 2

Consider the system of a stured tank reactor where the 1sother-
mal series/parallel Van de Vusse reaction is taking place. Tt is de-
scribed in the state space form as:

x=—kx -k +(c,—xu
% =k1X'1 7k27ﬁfx2u
Y=X

where k=50, k;=100, k;=10, ¢,,=10, x,.=3 and x,,=1.117 (see
Wright and Kravaris [1992] for meanings and dimensions in de-
tail). The transformation [Wright and Kravaris, 1992]

_C X
(S
t_, =k1X1 +k3Xf 7(0540 _X1)(k1x1 _kzxz)
2 « S
7] X

leads the process to the natural coordinates form and the output
becomes

_-B+yB’4AC

y 7A

where

k Cio —2kc.x +kaxf
%

B :_t_,z _t_.1(k1 -k +2ke,, _k1t_,1)

2 2 2
=k10ao ko % ke % —2ko % H2ke XX kXX

A:katj =

P
X
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c_—X
_ 2 _ _ 2 _ 1
C=kec,, Tkac,, klcaog =kc,, Tksc,, ~kic,, WX
2

Hence, from Eq. (10),

y*z{—B +JB2—4AC] 2 [—B +JB*—4AC
=0

2A oL, 2A Lugz

2 2
=|i-B —2D+B +3BD +2D 4AC}/2A an
J(B+D)Y —4AC
where
D=¢ =k1X1 +hox e —xx koxy)
2

X xﬁ

Since at the steady-state

_klxls +k3)(?s
y, ===
Coo — X5
kix kx
X.gs_ 14%s 14415

Cketu, K Hkox,, Hhex (6, X))

we can find another transformation which results n the state Eq.
(14) as

t.n =X
t.ﬁ =x,—4,(x;)
where

kixi(c. —x1)
ke, —x) tkix +k3Xf

bo(x:) =

The output becomes

y=0,({)+,

Thus, we can choose, as an appropriate auxiliary minimum-phase
output,

S (ST (S

The zero polynomials for the output and the auxiliary minimum-
phase output are

H(S)=¢2 (gl s)(k2 +1ls)(0407 C_vls)iq)E (t.ns)s

H*(S)=¢2(§k“)(1<g+us)(cm*95)+{¢2(Qs)(0mfgs)
_hz(t.us)[q)g (t.lls)(cao_ t_|15)+¢2(t.us)] }S

Hence

* :¢'2(§1)(Cao_t.ll)_¢2(t_}1)
b8 = e 6 70,0

That 1s,
X —0.(x)

e, x) 1
becomes a local ISE optimal mmmmum-phase output.

Control performances with the ISE optimal minimum-phase
output of Wright and Kravaris [1992] and the above two auxil-
tary outputs (17) and (18) were compared. The same linearizing
control system as in Wright and Kravaris [1992] with B=0.01, K =

y*=x, -2

(18)
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Table 1. Integral of square errors between y, and y for load and
set-point changes

Wrightand  Output Cutput
Change Kravaris (7 (18)
Load (c,: 10to 9) 6.244E-5  6364E-5 6.565E-5
Set-point (1.117 to 1.05)  5.478E-5 5445E-5 5.392E-5

1124 \
f

1.115f \
11

1105

0 0.005 0.01 0.015 002 0025 003 0035 004 0045 005
time

Fig. 2. Control responses with three minimum-phase outputs in
case of a step set-point change of the Van de Vusse reaction
example: solid line-Wright and Kravaris ISE optimal out-
put, dotted line-output (17), and dashed line-output (18).

5 and 7=0.01 was used (Fig. 1). Integration step size was 0.002
and 500 steps were sunulated. Partial derivatives for linearizing
controller block in Fig. 1 were calculated mumerically via the cen-
tral difference method with perturbation of 0.0001 to avoid mis-
takes in the program coding. The integral of square errors between
¥, and y for lead change and set-point change are shown in Table
1. Degradation due to our approximation 18 not so serious and
would be compensated by adjusting parameters of the external PT
controller. Control responses for step set-point changes are shown
m Fig. 2. All of them are almost not distmgwshable.

CONCLUSION

Methods to obtain mimimum-phase outputs approximating the
ISE optimal minimum-phase outputs of Wright and Kravaris
[1992] are proposed. While the Wright and Kravaris method has
no analytic solutions for processes with more than three state ver-
iables, the proposed method has no limitations in the number of
state variables.
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