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Abstract-Nonminimum-phase parts are better removed in the feedback loop like the time delay term. For this, 
Wright and Ka-avaris [ 1992] proposed the concept of optimal minimum-phase output to control noiflinear nonminimum- 
phase processes. However, their optimal minimum-phase output has no analytic solutions for processes with more 
than three state variables. Here, methods for analytic minimum-phase outputs approximating the optimal ones are 
proposed, having no limitations in the nulnber of state variables. The proposed methods provide analylic solutions for 
processes with three state variables and simple nanlerical solutions for those with more state variables. 
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I N T R O D U C T I O N  

For nonlinear nolmlinmlum-phase processes, controller design 
methods such as the input/ontput linearization method [Kravaris 
and Chung, 1987], which are based onthe inversion of process dy- 
nanflcs, cannot be applied directly clue to their unstable inverse. 
The noumiuimum-phase parts which yield unstable inverse should 
be removed in the inversion mechanism. For linear processes, the 
noumiuimum-phase parts can be easily isolated by decomposing 
the process transfer fimctions. The internal model control of Garcia 
and Mol-ali [ 1 982] and the generalized Snlith pl-~x.tictor of Ranlan- 
athan et al. [1989] incorporate decomposition of ~-ansfer fimctions 
in their controller design frameworks. For nonlinear noumiuimum- 
phase processes, such decomposition is not apparent except for the 
second order processes [Kl-avaris and Daoutidis, 1990]. Instead, 
Wiight and Kravaris [1992] have proposed a method using auxil- 
iary outputs which are static@ equivalent to the real outputs and 
minimum-phase. With the auxiliary outputs, minimum-phase pre- 
dictors and consequent noillinear control systems for the noiflmear 
nouminimum-phase processes can be designed. One of  key steps 
in the method is how to obtain appropriate statically equivalent 
minimum-phase outputs. For fffis, Wiight and Kravaris [1992] also 
have proposed statically equivalent outputs which are optimal with 
respect to a certain integral of square error (ISE) criterion. Their 
control systems provide excellent control performances. However, 
obtaining the ISE optimal minimum-phase output is somewhat re- 
sbicfive because it is based on the nonlinear processes in natul-al 
coordinates [Hunt et al., 1 983]. Furthermore, because it requires 
solving high-order Euler-Lagrange equations for nonlinear dynam- 
ical optimization, it is very hard to compute except for the pro- 
cesses with zero dynamics of order 2 for which analytic solutions 
exist. 

Here we propose a statically equivalent minimum-phase out- 
put which approximates the ISE optimal minimum-phase one of 
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Wiight and Kravaris [1992] and can be used in the fi-amework of 
their control system for nonlinear nonmiuimum-phase processes. 
The extended linearization method [Batmlalm and Rugh, 1986; 
Lin, 1994] is utilized. As shown later, it is the first order Taylor 
series expansion of the global ISE optimal minimum-phase one 
which is valid for neighborhoods along equiliblium points. If set 
point changes are not very fast and control actions are mild, states 
of the process will not excurse far from their equilibrium values 
and the proposed minimum-phase output approximating the glohal 
ISE optimal one will be effective. It has the following properties: 

- Analytic solutions are available for processes with zero dy- 
namics of  orders up to 3. 

- For processes with higher order zero dynamics, solutions can 
be easily calculated numerically and interpolated to analytic forms. 

- When linearized at equiliblium points, both the proposed out- 
put and the ISE optimal minimum-phase output are the same. 
Minimum-phase predictor with the proposed output can be inter- 
preted as a gain-scheduled linear ISE opninal predictor compensat- 
ing variation of the equilibrium point because it is the linear ap- 
proximation of the global ISE optimal output of Wright and 
Kravaris [1992]. 
1. Non l inear  N o n m i n i m u m - p h a s e  Processes  

Consider a nonlinear process 

x(t)=f(x(t))+g(x(t))u(t) 

y(t)=h(x(t)) (1) 

where x, u and y are the n state variable vector, the scalar input 
variable and the scalar output variable, respectively. It is assumed 
that the process (1) has an isolated equilibrium point (u,, x,). The 
process (1) is bcally mmmmm-phase in a neighborhood of the 
equiliblium point (u,, x,), if all roots of the following polynonlial 
in Laplace variable s are in the open left haft'plane: 

n(s) c adj(sI A) b (2) 

where 
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Fig. 1. Linearizing control system for nonlinear nonminimum- 
phase processes. 

A -  ['offx) +~g(x). ~ b=g(x=), c TOh(x)~ 
-L-E  ax %:  

Processes for which some roots of (2) are in the open right half 
plane over desired equilibrium points are considered. The input/ 
output linearization method cannot be applied directly to such pro- 
cesses. Wiight and Kravaris [1992] proposed a noiRinear control 
system as in Fig. 1 which is an extension of the linear generalized 
Smith predictoE In Fig. 1, the auxiliary output 

y* h*(x) (3) 

is such that it is statically equivalent to the output y and mini- 
mum-phase. The choice of the auxiliary output y* is rather arbi- 
teary but very much affects control performance. With transform- 
ing the process m i .]atuml coordkxqtes, Wiight and Kl-avaris [1992] 
proposed the auxiliary output which is optimal with respect to the 
integi-al of square error (ISE) between y and y* when controlled 
perfectly. The ISE opfilnal minimum-phase output provides excel- 
lent control performance. However, because it requires solving the 
Euler-Lagmnge equation, it is very hard to obtain except for file 
second order case. Its approximation is investigated here. 
2. Approximation of the ISE Oplimal Mimimum-phase Out- 
put 

The ISE optimal minimum-phase output of Wright and Kra- 
varis [1992] can be obtained for a nonlinear process in natural co- 
ordinates [}{UIlt et al., 1983]. Consider a nonlillear system of re- 
lative order r in natural coordinates: 

g = g  

y=h(~ ...... g, ,+,) (4) 

The local zero polynomial around an equilibrium point ~,=(~1,, 
0 ..... 0) r is 

, , ah(r +Oh(~)~ + 0h(K)o - n/s) :--~--~, - - - ~  o ' +--o"'at,_,+ ' (5) 

If  sonle root.s of the zero polynomial (5) are m the open fight tkalf 
plane, control systems like in Fig. 1 which does not inverse the 
zero dynamics should be used. For the control system in Fig. 1, 
the ISE optimal minimum-phase output y* is proposed by Wright 

and Kravaris [1992]. It is stated as an (n-r+l)-th dimensional non- 
linear dymmical optilnization problem and it results in solving an 
(n-r+l)- th  order Euler-Lagrange equation which is usually very 
hard to solve except for the second order case. Minimum-phase 
output which approximates the ISE optimal one is investigated. 
Since the steady-state values of states, ~, i=2, 3, ..., n - r+ l ,  are ze- 
ro, the fn-st approximatic~l which is valid along equilibrium points 
is 

y*=h*(~)+h*(~)~++h* ,+1(~,)~ ,+1 (6) 

It is just the first order Taylor series expansion about for 4,, i=2, 
3, ..., n - r+ l  around their steady-state values of zero. From Eq. (4), 
we can see that the state variables ~,, i 2, 3 ..... n - r+ l  will not be 
far from their steady-state values of zero if the control input is 
mild. Hence effects of higher order terms ignored in Eq. (6) will 
not be much. 

The zero polynomial for the auxiliary output (6) around an equi- 
libritm~ point ~ (~1,, 0 ..... 0) z is 

dh* * * n-r n* ( s ) -  L7(~,=) + h ~ ( r  ,+l(~,~)s (7) 

For the auxiliary output (6) to be approximation of the ISE optimal 
lninmlua>phase output, the zero polynonfial (7)shoukt be ISE op- 
timal locally around the equilibrium point g=({,,, 0 ..... 0) ~ and 
statically equivalent. That is, it should satisfy Wright and Kl-a- 
varis, 1992] 

n*(s) n*(-s)=n(s)  n(-s)  (8) 

a n d  

h*(~)=h(~) 

From Eqs. (5), (7) and (8), we have [Ri&tle and Andei-son, 1966] 

[ dl l*(r 2 ]-S,h(r -a 
dr ] : / - - ~ ,  ] 

h*(r ~1 ~-~ dh*(~,~) h'H" ~=[Oh(~0~ 2 _Oh(~)ah(~) 
[-~,., . . . . .  de, *,3,--,,~,, j_ 241 _j -2  -~-~ ar 

[ h* ,+,(r =['~ ~ 
Lor . ,J 

(9) 

Apgument 41, in both sides of Eq. (9) is a dummy and can take 
any value in the desired whole range. Hence we can drop the sub- 
script s in ~1,. Closed-form solutions are available for orders up to 
3. For example, in case of n - r +  1 =2, the solution of (9) is 

, . . . . .  ~h(~,O)~ 
y = n ~ , u )  - - ~ - - ~  ~:2 (10) 

It can be easily checked that it is the first order Taylor series ex- 
pansion about ~2=0 of the ISE optimal minimum-phase output of 
Wright and Kravaris [1992] 

y*u =h(~l,~) ~ (11) 

For n - r + l  =3 and Oh(~,, 0, 0) >0 (without loss of generality), 
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y* h(~l,0,0) 

~ah(~,,0,0)'~ ~ah(~,,0,0) ah(~,,0,0) 

I _ah(r ah(r r ah(g,,0,0)a~ r 
+ 

(12) 

There is no such closed-fonn solution for the ISE optflnal mini- 
mum-phase output. When n - r+ l  is greater than 3, solutions of (9) 
can be found numerically for the whole range of the state r and 
can be interpolated to the analytical minimum-phase output. 
3. Extension to General Nonlinear Nonminimum-phase Pro- 
cesses 

The auxiliary output of the form (6) can also be applied to gen- 
eral nonlinear nonminimum-phase processes which cannot be 
b-ansfom~ed to the natta-al coordinates whenever the equilibman 
point is of the form ~=( r  0 ..... 0)< Since a restrictive class of 
nonlinear processes can be tmnsfonned to the process in nattaal 
coordinates, it is important for wide applications. For a nonlinear 
system (1), the equation f(x)+g(x)u=0 usually has a solution about 
{u, x2, x~ ..... x~} as a function of x> Let the solution for x, as ~,(xl) 
and define new state variables as 

~1 : X l  

~--x, ~,(x,), i=2, 3 ..... n (13) 

Then the state Eq. (1) becomes 

r169169 

y=h(r (14) 

with an equilibrium point of the form {, ({1,, 0 ..... 0)< 
The zero polynomial is 

n(s) c adj(sI-A)b (15) 

where 

A = [ ' ~  +~u]~) r ~_1~,' b =/q(r c =[~]~, 

The zero polynomial for the process with output y* of the form (6) 
is 

n*(s)=c* adj(sI-A)b (16) 

where 

c* =[ dh](r 1,*~r ~ * ] 

For the output y* to be ISE optimal along equilibrium points, the 
above two zero polynomials should satisfy the Eq. (8). It is known 
as a spectral factorization problem to fred a stable polynomial 
n*(s) fi-c~n n(s)satisfying Eq. (8). There are closed-fonn solutions 
for orders up to 3. Numerical iterative methods for higher order of 
equations are given in Riddle and Anderson [1966]. From n(s) as 
a function of r we obtain n*(s) by solving Eq. (8). With n*(s), c* 
and consequently h*(r can be easily found from (16) since they 
appeal- linearly. 

EXAMPLES 

1. Example 1 
For illustration pt~oses, we consider a second order nonmini- 

mum-phase process as [Wright and Kravaris, 1992]; 

X 1 X s  

x~=f(xl, x~)+g(xl, x~)u 

y=h(x)=~q 3x2 x~x2 x~ 

The process is already in the folm of natural coordinates. The equi- 
librium point is x, =(x> 0). The zero polynomial is 

ah(x~) , ah(x~)~ = 1 - (3  +x~l~)s 
n(s) :--a-U-x ~ ax----7~ 

Hence it is nonminimurn-phase along the equilibrium points. From 
Eq. (8), we have 

n*(s) =1 +(3 +x~l~)s 

Therefore, hl(x~,)=xl, and h2(x~,)=3+x 1,. The minimum-phase out- 
put whirl  results in the above zero polynomial at each equilibrium 
point is 

y*=x~+3xffx~x~ 

We can see that it is the first order Taylor series expansion about 
x2 of the global ISE optimal one of Wright and Kravaris [1992]; 

, _ + + ~ + s y ~ - x ,  3x~ x,x~ 5x~ 

2. Example 2 
Consider the system of a stirred takk reactor where the isother- 

mal series/parallel Van de Vusse reaction is taldng place. It is de- 
scribed in the state space form as: 

x ~ k , x , - k ~ + ( % - x ~ ) u  

x~=k~x~ k3x~ x~u 

y=x~ 

where k~=50, k2=100, k3=l 0, %=10,  x1,=3 and x2,=1.117 (see 
Wright and Kl-avaris [1992] for meanings and dimensions in de- 
tail). The transformation [Wright and Kravaris, 1992] 

~1 Ca~ Xl 

N 

~2 k,x~ + k ~  (%o-Xl)(k~x~-k~x~) 
2 

X2 X 2 

leads the process to the natural coordinates form and the output 
becomes 

B +,~B'7 4AC 
Y-  2A 

where 

A =k3 r - k3c2~~ -2k3cooXt +k3~ 

B = % -  r +2k~coo -k~r 
2 + 2 

_ - k 3 X l  x 2 klCoo -k~ %oXl -k~cooX~ -2k3%oX2 2k3cooXlX~ 
2 

X2 
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Cao X 1 
C =k, %0 +k~c~oo -k, Coo~1 =k, %~ +L C~oo -k, %~ 

X2 

Hence, from Eq. (10), 

y , = [ - B + ~ ~ k  21 /~,=0 ~ - I - B  2A de,=0 

i ~ +  + 2 = -B  -2D ~ 4AC_2A (17) B +3BD + 2 D  ~ > 
~/(B +D) ~-4AC d 

where 

D = ~  k,x,+k3x~, (%~ x,)(k,x, k2x2) 

Since at the steady-state 

k x= + k ~  
Ua-- 

Coo --Xl~ 

klxl~ klxl~ 
x~ k~ +u~ k~ +(Lx~ +k~x~,o)/(Coo x,~) 

we can find another transfomration which results in tile state Eq. 
(14) as 

~1 =Xl 

~=x~ r 

where 

k~x~(Coo -x0 r 
k2(coo Xl) +Nix1 +ksx~l 

The output becoraes 

Thus, we can choose, as an appropriate auxiliary minimum-phrase 
output, 

y*=~:(~,)+h~*(~,)~ 

The zero polynomials for the output and the auxiliary minimum- 
phase output are 

n(s)=r ~) r 

n*(s)=C,~(~,~)(k~+u.)(% ~)+{r ~) 
-h:(~,~)[{o:(~l~)(Coo- ~)+{o:(~)1 )s 

Hence 

h*~ ~ , '~(~)(c~-~,)- ,~(~) 
2 \"~12 p ~(~O(Coo-~,) +*~(~) 

That is, 

Table 1. Integral of square en~rs between y~ and y for load and 
set-point changes 

Wright and Output Output 
Change Kravaris (17) (18) 

Load (%0 10to 9) 6.244E-5 6.364E-5 6.565E-5 
Set-point (1.117 to 1.05) 5.478E-5 5.445E-5 5.392E-5 

Y 

1.115 

1.11 

1.12 

1JOG ~ 

0 0,005 0.01 0.015 0.02 0.0:25 0.03 0.[X~5 
time 

0,04 0.0~5 0.05 

Fig. 2. Control responses with three minimum-pltase outputs in 
case of a step set-point change of the Van de Vusse reaction 
example: solid line-Wright and Kravaris ISE oplimal out- 
put, dotted line-output (17), and dashed line-output (18). 

5 and ~70.01 was used (Fig. 1). Integration step size was 0.002 
and 500 steps were simulated. Partial derivatives for linearizing 
controller block in Fig. 1 were calculated numerically via the cen- 
tral difference method with perturbation of 0.0001 to avoid mis- 
takes in the program coding. The integral of square elTors between 
y,p and y for load change and set-point change are shown in Table 
1. Degradation clue to our approximation is not so serious and 
would be compensated by adjusting parameters of the external PI 
controller. Control responses for step set-point changes are shown 
in Fig. 2. All offflem are almost not distinguishable. 

C O N C L U S I O N  

Methods to obtain mmmlum-phase outputs approxmla~lg tile 
ISE optimal minimum-phase ouDuts of Wright and Kravaris 
[1992] are proposed. While the Wright and Kravaris method has 
no analytic solutions for processes with more fflan three state var- 
iables, the proposed method has no limitations in the number of 
state variables. 

y ,  ~ x~-r 
= X  2 --Z r - -  

(~ 2(X1)/ "+1 
<(Xl----7~Ooo x,) 

(18) 

becoraes a local ISE optinral raininmm-phase output. 
Control performances with the ISE optimal minimum-phase 

output of W'right and Kravaris [1992] mid tile above two auxil- 
iary outputs (17) and (18) were compared. Tile same lmearizing 
control system as in Wright and Kravaris [1992] with [3=0.01, K~= 
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